Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
2022 Geothermal Rising Conference: Using the Earth to Save the Earth, GRC 2022 ; 46:793-803, 2022.
Article in English | Scopus | ID: covidwho-2324409

ABSTRACT

Community greenhouses are important for the production of local food and reduction of food supply insecurities within cities. As we've seen with Covid-19, pandemics highlight the criticality of local food access to underprivileged urban districts. Since almost 60 % of the energy used in greenhouses is spent in heating and cooling, ground heat exchangers (GHEs) can play a significant role in supplying temperature regulation, but geothermal heat pump systems tend to be expensive for community organizations. An efficient way to reduce GHEs installation costs is to dig trenches to install the system horizontally and cover a part of heating and cooling loads only. In order to ensure cost effectiveness and optimize operations, this type of system was studied for urban greenhouses where ground space can be limited. Sizing calculations were performed for GHEs of a 7.62 m x 15.24 m greenhouse located on the Island of Montreal where the annual, monthly, and hourly energy consumption were estimated from previous building simulations. Three scenarios were used to specify sizing of the system in terms of excavation dimensions and percentage of the greenhouse peak loads covered;(1) number and length of trenches required for a horizontal GHE (HGHE) covering 100% of cooling and heating loads;(2) number and length of trenches required for an HGHE to cover 100% of peak heating loads and 60% of peak cooling loads and;(3) the percentage of heating and cooling peak loads that can be covered by an HGHE located under the greenhouse with similar dimensions (around 116 m2). Estimated excavation dimensions for cases 1 and 2 are 51.8 m x 8 m (414.4 m2) and 40.8 m x 8 m (326.4 m2). Estimated percentage of peak loads covered for case 3 is 40% of heating peak loads and 30% of cooling peak loads. © 2022 Geothermal Resources Council. All rights reserved.

2.
Journal of Engineering and Applied Science ; 70(1):48, 2023.
Article in English | ProQuest Central | ID: covidwho-2322049

ABSTRACT

The impact of the COVID pandemic has resulted in many people cultivating a remote working culture and increasing building energy use. A reduction in the energy use of heating, ventilation, and air-conditioning (HVAC) systems is necessary for decreasing the energy use in buildings. The refrigerant charge of a heat pump greatly affects its energy use. However, refrigerant leakage causes a significant increase in the energy use of HVAC systems. The development of refrigerant charge fault detection models is, therefore, important to prevent unwarranted energy consumption and CO2 emissions in heat pumps. This paper examines refrigerant charge faults and their effect on a variable speed heat pump and the most accurate method between a multiple linear regression and multilayer perceptron model to use in detecting the refrigerant charge fault using the discharge temperature of the compressor, outdoor entering water temperature and compressor speed as inputs, and refrigerant charge as the output. The COP of the heat pump decreased when it was not operating at the optimum refrigerant charge, while an increase in compressor speed compensated for the degradation in the capacity during refrigerant leakage. Furthermore, the multilayer perception was found to have a higher prediction accuracy of the refrigerant charge fault with a mean square error of ± 3.7%, while the multiple linear regression model had a mean square error of ± 4.5%. The study also found that the multilayer perception model requires 7 neurons in the hidden layer to make viable predictions on any subsequent test sets fed into it under similar experimental conditions and parameters of the heat pump used in this study.

3.
Energies ; 16(7):3186, 2023.
Article in English | ProQuest Central | ID: covidwho-2295266

ABSTRACT

This paper explores ways to save energy in households with energy prosumers who generate energy using photovoltaic panels and heat pumps. On the basis of a literature analysis, we formulated a research gap in the case of the energy behaviors of prosumers. This research is important due to the growing demand for energy and the transitions of countries toward renewable energy sources. The role of prosumers in the economy is growing as they ensure energy independence and cost savings. The main purpose of this research is to understand the energy behaviors of prosumers and to examine the differences in energy behaviors between users of photovoltaic systems and heat pumps. A sample of 326 Polish prosumer households was selected using the CAWI method in order to obtain empirical data. The results suggest that prosumers show advanced ecological behaviors, and more than half of the respondents implement pro-ecological behaviors in their homes. Being a prosumer is associated with energy independence, which leads to economic stability and less dependence on traditional energy sources. The results indicate that prosumers show a general inclination toward pro-ecological behavior. Thus, this study recommends promoting prosumers and encouraging the use of pro-ecological energy as a priority for the economy. This initiative will contribute to a reduction in energy consumption in various areas, thus raising ecological awareness and a sense of responsibility for the environment.

4.
Sustainable Energy Technologies and Assessments ; 56, 2023.
Article in English | Scopus | ID: covidwho-2243180

ABSTRACT

Before the Covid-19 pandemic UK passed net-zero emission law legislation to become the first major economy in the world to end its contribution to global warming by 2050. Following the UK's legislation to reach net-zero emissions, a long-term strategy for transition to a net-zero target was published in 2021. The strategy is a technology-led and with a top-down approach. The intention is to reach the target over the next three decades. The document targets seven sectors to reduce emissions and include a wide range of policies and innovations for decarbonization. This paper aims to accomplish a much needed review of the strategy in heat and buildings part and cover the key related areas in future buildings standard, heat pumps and use of hydrogen as elaborated in the strategy. For that purpose, this research reviews key themes in the policy, challenges, recent advancement and future possibilities. It provides an insight on the overall development toward sustainability and decarbonization of built environment in the UK by 2050. A foresight model, Future Wheels is also used to visualize the findings from the review and provide a clear picture of the potential impact of the policy. © 2023

5.
Energies ; 15(16):6089, 2022.
Article in English | ProQuest Central | ID: covidwho-2023312

ABSTRACT

In recent years, one of the key postulates in the European Union’s policy has become the development of renewable energy sources. In order to achieve the desired synergy effect, the idea of combining two selected sources of energy appeared. This article presents a technical and economic analysis of a hybrid connection of a ground source heat pump with a photovoltaic installation. Taking into account the heat demand of the building, a ground heat pump with a catalog nominal heating power of 25 kW was selected. This article presents the problem of the economic profitability of using a hybrid combination of a heat pump and photovoltaic panels in domestic hot water and central heating systems. The justification for the use of such heat sources in these installations is due to global trends and the gradual departure from conventional energy sources such as oil or gas boilers. This paper presents the economic and ecological results of using the pump heat connected together with photovoltaic panels. In the economic analysis, with the assumed installation costs related to the use of the considered heat pump and PV, two parameters commonly used in the investment analysis (static and dynamic) were used, namely, the simple payback period and the net present value of the investment. For the adopted assumptions, the usable area of the facility and the number of years of use were indicated, at which the investment in question is competitive with other alternative investment interest methods and will start to bring tangible benefits. The performed analysis also has measurable environmental benefits in the form of a reduction in carbon dioxide emissions at the level of 2893 kg/year into the atmosphere. The presented solution will help future investors understand the investment profitability mechanism for their households.

6.
Energies ; 15(13):4596, 2022.
Article in English | ProQuest Central | ID: covidwho-1934003

ABSTRACT

Shallow Geothermal Energy (SGE) extracted by Ground Source Heat Pump (GSHP) is a proven clean and profitable technology. Although it is available almost everywhere, its market enjoys different maturity levels along with the other EU Members and even those within the same country. In the Murcia region, in Southern Spain, the presence of GSHP is almost nonexistent. Germany, in contrast, has an extensive tradition of exploiting its SGE resources and is an example of a mature GSHP market. In this work, the technical and non-technical barriers were assessed in both countries to identify the site-specific parameters preventing a better deployment of SGE in Southern Spain. In addition, a SWOT analysis was conducted to highlight the parameters positively and negatively influencing the geothermal resource extraction. Results showed that both study cases showed similar and good technical conditions, such as sufficient resource 80 W/m approx. or a similar impact on the environment mainly due to the use of electricity consumed. However, the regulation and legal framework greatly varied from one area to another. In conclusion, the main factors causing a poor deployment are the lack of specific regulation or regional administration support.

7.
International Journal of Global Warming ; 26(4):391-404, 2022.
Article in English | ProQuest Central | ID: covidwho-1817518

ABSTRACT

In this study, geothermal-based three different systems are examined comparatively and a decision-making method is used to find the best option to use in refugee settlements. Earth air heat exchanger (EAHE), vertical ground source heat pump (VGSHP), and horizontal ground source heat pump (HGSHP) are evaluated from the viewpoint of environmental impact, performance, economy, and health. This study is the first study related to the evaluation of EAHE and GSHP systems by using the analytical hierarchy process (AHP). It is concluded that EAHE is the best option for refugee settlements;also EAHE is a healthier option for the COVID-19 pandemic.

8.
Sustainability ; 13(6):3370, 2021.
Article in English | ProQuest Central | ID: covidwho-1792502

ABSTRACT

The blind spot can be defined as the area around the vehicle where the driver cannot see through the mirrors without turning their head or taking their eyes off the road. Similar blind spots occur in energy policy. Blind spots can occur in forecasting economic development and creating policy documents. This study uncovers potential blind spots and controversies in the sustainability assessment of energy supply technologies. A composite sustainability index was constructed to compare district heating with four individual heating technologies—wood pellet boilers, natural gas boilers, solar collectors, and heat pumps. A total of 19 indicators were selected and grouped into four dimensions of sustainability—technical, environmental, economic, and social. The results reveal that district heating can compete with individual heating technologies in all dimensions of sustainability;however, a possible blind spot lies in evaluating environmental performance indicators of the different heating technologies. This study provides a novel decision-making tool that policy-makers could use to identify and avoid potential blind spots and uncertainties in energy policy at an early stage.

9.
Energies ; 15(3):851, 2022.
Article in English | ProQuest Central | ID: covidwho-1686663

ABSTRACT

[...]these measures should be combined with other measures. [...]the paper Maintenance of Passive House Standard in the Light of Long-Term Study on Energy Use in a Prefabricated Lightweight Passive House in Central Europe [5] is an experimental study on different parameters: the orientation that maximizes heat gains from solar radiation, thermal insulation of partitions, heat provided by a geothermal heat pump, and a mechanical ventilation system with a heat exchanger. Since the science has spoken, politicians and citizens now need to do their part to achieve the shared goal of a more sustainable and energy efficient building sector.

10.
Energies ; 14(24):8478, 2021.
Article in English | ProQuest Central | ID: covidwho-1594795

ABSTRACT

The use of Stirling-cycle-based heat pumps in high-temperature applications and waste heat recovery at an industrial scale is of increasing interest due to the promising role in producing thermal energy with zero CO2 emissions. This paper analyzes one such technology as developed by Olvondo Technology and installed at the pharmaceutical company AstraZeneca in Sweden. In this application, the heat pump used roughly equal amounts of waste heat and electricity and generated 500 kW of steam at 10 bar. To develop and widen the use of a high-performance high-temperature heat pump that is both economically and environmentally viable and attractive, various analysis tools such as exergy analysis and life cycle assessment (LCA) can be combined. The total cumulative exergy loss (TCExL) method used in this study determines total exergy losses caused throughout the life cycle of the heat pump. Moreover, an LCA study using SimaPro was conducted, which provides insight into the different emissions and the overall environmental footprint resulting from the construction, operation (for example, 1, 8, and 15 years), and decommissioning phases of the heat pump. The combined results were compared with those of a fossil fuel oil boiler (OB), a bio-oil boiler (BOB), a natural gas-fired boiler (NGB), and a biogas boiler (BGB).

11.
8th International Building Physics Conference, IBPC 2021 ; 2069, 2021.
Article in English | Scopus | ID: covidwho-1598349

ABSTRACT

COVID-19 em ergency has ca used major changes in everyday life in the la st m onths, a nd it a lso affected the management of buildings. In particular, indoor a ir quality and ventilation ha ve been considered to play a key role in the spreading of the infection, causing national and interna tional subjects to draw up specific guidelines on ventilation and air recirculation rate in AHUs. The pa per deals with the “Loccioni Leaf Lab”, a n industria l building that hosts offices a nd workers operating on test benches. The building features high performance envelope, solar photovoltaic systems, groundwater heat pumps a nd a high -technology control a nd monitoring system and it is connected to a thermal and electric smart grid. A va lidated m odel of the building, im plem ented with the software DesignBuilder a nd EnergyPlus, wa s used to carry out numerical sim ula tions to optimize the m anagement of the HVAC through the Building Management System. Different working conditions have been sim ulated, a nd the numerical output has been used together with experimental data collected from the Company monitoring system. Ithas been possible to investigate how the extra ventilation required by the new guidelines would affect the tota l energy consumption a nd to compare, in term s of energy efficiency, the different HVAC m a nagement stra tegies tha t could be used to ensure occupants hea lth safety and indoor air qua lity. © 2021 Institute of Physics Publishing. All rights reserved.

12.
2021 International Hybrid Conference on Carbon Neutral Cities - Energy Efficiency and Renewables in the Digital Era, CISBAT 2021 ; 2042, 2021.
Article in English | Scopus | ID: covidwho-1574523

ABSTRACT

A major challenge in the operation of water heating systems lies in the highly stochastic nature of occupant behavior in hot water use, which varies over different buildings and can change over the time. However, the current operational strategies of water heating systems are detached from occupant behavior, and follow a conservative and energy intensive approach to ensure the availability of hot water any time it is demanded. This paper proposes a Reinforcement learning-based control framework which can learn and adapt to the occupant behavior of each specific building and make a balance between energy use, occupant comfort and water hygiene. The proposed framework is compared to the conventional approach using the real-world measurements of hot water use behavior in a single family residential building. Although the monitoring campaign has been executed during home lockdown due to COVID-19, when the occupants exhibited a very different schedule and water use related behavior, the proposed framework has learned the occupant behavior over a relatively short period of 8 weeks and provided 24.5% energy use reduction over the conventional approach, while preserving occupant comfort and water hygiene. © Content from this work may be used under the terms of the Creative Commons Attribution 3.0 Licence.

SELECTION OF CITATIONS
SEARCH DETAIL